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I. Phys. A Math. Gen. 24 (1991) 3557-3574. Printed in the UK 

Dynamical potential algebras for Gendenshtein and 
Morse potentials 

M J Englefieldt and C Quesneis 
?Department of Mathematics, Monash University, Clayton, Victoria 3168, Australia 
$Service de Physique Nuclhire ThhCorique et de Physique Math6matique. Universit6 Libre 
de Brureller, Campus Plaine, C P  229-B-1050 Brussels, Belgium 

Abstract. A differential realization of ao(2,I) is shown to he the potential algebra for the 
one-dimensional systems with the Morse or Gendenshtein potentials. This shows that two 
ClassesofGendenshtein potentials will support the sameeigenvalues as the Morse potential, 
and that the three sets of eigenfunctions may he derived in a common formalism. The 
potential algebra is then extended to a dynamical potential algebra with operaton connect- 
ing states both in different potentials and with different energies, giving new dynamical 
algebras for the Gendenshtein problem. The matrix elements of certain corresponding 
operators in the three types of system may then be given by a single formula involving 
sa(2, I )  Wigner coefficients. We also give ladder operators connecting the Gendenshtein 
potential eigenstates. 

1. Introduction 

The Morse potential is one of the one-dimensional quantum mechanical systems for 
which the eigenvalues can be determined by an algebraic method, and the eigenfunc- 
tions (bound states) can be generated from the ground state using operators that realise 
a Lie algebra (Corder0 and Hojman 1970, Berrondo and Palma 1980, Alhassid et a/ 
1983). When the operators actually produce eigenfunctions belonging to the same 
eigenvalue of systems with different potential parameters, the algebra is a potential 
algebra, and the algebraic method gives results for a family of potentials (Alhassid ef 
a/ 1986). This is essentially a group-theoretical interpretation of the use of supersym- 
metry, or the Darboux transformation. The potentials of the related systems are called 
shape-invariant (Gendenshtein 1983) when they have the same functional form but 
different values of some numerical parameters. Gendenshtein's search for such poten- 
tials revealed new soluble problems with the Gendenshtein potentials, given here in 
(6.4) and (6.6). Wavefunctions have been obtained (Dabrowska et a/ 1988) using the 
potential algebra operators, and also (Pertsch 1990) by the usual method of using 
special functions to solve the Schrodinger equation. This may well be the only example 
where the algebraic solution has preceded analytic methods. 

Aigebraic methods were first deveioped by taking some panicuiar system and 
looking for suitable associated operators. Gendenshtein took the different approach 
of requiring shape invariance, and then determining potentials that satisfied the 

5 Direeteur d e  recherches FNRS 

0305-4470/91/153557+ 18503 50 0 1991 IOP Publishing Ltd 3557 



3558 

necessary conditions. A similar procedure (Corder0 er a/ 1971, Wu and Alhassid 1990) 
determines some operators which form a realization of an algebra orgroup, in particular 
so(2, I), and then obtains the potentials that appear in associated Schrodinger equations 
for which the realization is the potential algebra. This procedure produced the Morse 
potential and two special cases of Poschl-Teller potentials, for which associated 
algebras were already known. We have found that Wu and Alhassid did not use the 
most general realization of so(2, 1) allowed by their assumptions and that, when this 

~ neneralimtinn i s  .- mnde the  _.._ acqnriated _II nntentinlc inchide two ~IIIQQPQ _._""_l of _. r.endenchtein __.._I.." ..._... 
potentials. These potentials, together with the Morse potential, may be treated in a 
common formalism, explaining why they have the same eigenvalues. The common 
properties of these three classes extend to the calculation of eigenfunctions, and the 
evaluation of certain matrix elements. 

As well as showing that these apparently different systems have the same potential 
algebra, we have also obtained for them dynamical algebras of operators connecting 
states of different energy. Previously so(% 2) has been used as a dynamical potential 
algebra for the Morse potential (Barut et al 1987). We get the algebras so(3, I) ,  so(2.2) 
and iso(2, I )  for the three classes, which may also be distinguished by whether the 
value of a certain Casimir operator is positive, negative or zero. Dynamical algebras 
for the Gendenshtein potentials have not been obtained before. 

_.. rn the ..._ fnllnwinrr wctinn " __.._.. of this paper we give !he rea!iz&ofi of so(2, 11, cfid !he 
Schrodinger potentials that appear when the realization is considered as a potential 
algebra, in terms of two functions that satisfy coupled ordinary differential equations. 
These equations are easily solved, but most of our results can be obtained leaving the 
explicit form of these solutions unspecified. The potential algebra provides expressions 
for the eigenfunctions, and relations between the constants required to normalize them. 
In section 3 the dynamical potential algebras are obtained, and their Casimir operators 
evaluated. 

Next we get the representations of the algebras, including the matrix elements of 
operators forming a standard basis ofthe algebra. These matrix elements are physically 
significant when they are between eigenfunctions in the same potential. In section 5 
these physical results are picked out. Our results could be obtained by manipulating 
commctiltors, bc? simp!e procedcres ofthis !ype on!y show which matfix e!emen!s are 
zero. 

At this stage all the work is in terms of the two unspecified solutions of differential 
equations. In section 6 the solutions are obtained, and classified to give the three types 
of potential. The asymptotic behaviour of the functions then shows whether the 
normalizable eigenfunctions and matrix elements actually exist. 

It is also possible to obtain ladder operators that generate different energy eigenfunc- 
tions in the same potential, treating the three types of potential together. The details 
are given in section 7. Our results combine some unpublished results (Fellemans 1989) 
on the Gendenshtein potential with well known results in the Morse case (Nieto and 
Simmons 1979, Berrondo and Palma 1980). 

The following summary provides a convenient reference to the main physical results 
of the paper. The Schrodinger equation (2.6) is considered with the potentials given 
in (6.4), (6.5) and (6.6). for which (6.8) gives the bound state eigenvalues. In conjunction 
with table 3, (5.2)-(5.4) and (6.1)-(6,3) give normalized eigenfunctions. Equations 
(5.12)-(5.14) give the matrix elements of the operators in table 4. This presentation of 
the results emphasizes the fact that from our algebraic viewpoint these problems are 
different realizations of a single underlying structure. 

M J EngleJieid and C Quesne 
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2. The potential algebra so(2, 1) 

The operators 

are a realization of the algebra so(2, 1) if the functions f and g satisfy the differential 
equations (Wu and Alhassid 1990) 

f '= l - f '  g' = - fg .  (2.2) 

Then we have the commutation relations 

[ J + ,  J_]=-2Jo [Jo, JJ=*J+. (2.3) 

With real f and g, J, are Hermitian conjugates relative to an  inner product for which 
(a/ax)'= -@/ax) and (a/adJ)'= -(J/JdJ). The Casimir operator J2= ( J ~ T  Jo- J,J,) 
has the form 

If jkm)=Jlkm(x)e'"' are basis functions for the representation space of an so(2,l)  
irreducible representation of type D:, i.e. 

/,lkm)=mlkm) J'lk m) = k(k- 1)lk m) ( m = k , k + l , k + 2  , _ . . )  (2.5) 

then (Wu and Alhassid 1990) equations (2.5) require tJtkm to satisfy the Schrodinger 
equation 

-*"+ VmJl=-(k-f)2$ (2.6) 

where the potential is 

v, =(a-m2)f '+2mg'+g2. (2.7) 

Thus, an irreducible representation of the potential algebra so(2, l) ,  associated with 
potentials of the form (2.7), has basis states which are eigenfunctions of different 
Hamiltonians but belong to the same energy eigenvalue. This eigenvalue is determined 
by the value of the Casimir operator (2.4): (2.6) is just the eigenvalue equation for -/'-a with a/adJ in (2.4) replaced by im. 

Wu and Alhassid have considered Morse, Poschl-Teller and Rosen-Morse poten- 
tials which are cases of (2.7) obtained using particular solutions of (2.2). One of our 
objectives is to extend this to the Gendenshtein potentials (Gendenshtein 1983) by 
using more general solutions of (2.2). However, we find that much of our work can 
be carried through using only (2.2) rather than the explicit forms of their solutions. 
We therefore do not need to specify these forms until a later section of this paper. 

The functions $km may be obtained by solving J-Jldx) e"' = 0 for $o = Jlkk, and 
then calculating $n = ILkr+. by evaluating J:d~~(x) e'". The equation for 

(2.8) 

is 
J l t  - (1 
0- z f - k f+g)J lo  

which, using f= -g ' /g ,  integrates to 

*o= g ' - ' l 2 h  = g*-'/ '  exp( g(x) dx). (2.9) 
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Using equation (2.81, 
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J+& e’*’ = 2(g - kf)gk-’12h (2.10) e!(-k-l)+ 

and 

(2.11) ei(-k-2)+ 52 +(I~ eikm = 2[2g2-(4k+2)fg + (2k2+2k)f2- k]gk-l12h. 

The physical application of these results lies in taking these functions as the first 
three eigenfunctions of the potentia! (2:7)9 and it is then &rirab!e to Igc!udp norml!- 
ization constants. If (2.9) is normalized by multiplying by Nk,  this constant cannot be 
calculated algebraically, but the standard relation 

J+lk m )  = [(m + k ) ( m  - k+ l)]1’21k m + 1 )  

between normalized states determines the factors to be included in the h for n > 0. 

wavefunctions are solutions of (2.6) with different potentials: (2.8), (2.9) and (2.10) 
will be solutions of (2.6) and (2.7) with m = k, k + l  and k + 2  respectively. 

A recurrence relation for the (ground state) normalization constants Nk will now 
be obtained. Suppose (a, m) is the domain of the wavefunctions. (In section 6 we will 
take a to be either -m or 0.) Then 

are ( 2 k ) p  for (2.10) and q ! 2 k 2 + k ) - - I l 2  for (2.11). Note again !ha! !hese 

N ; ’ = j % g ’ * - l h ’ d x = ~  g’k-2d(h2) 
I r  

since h’  = gh. After integrating by parts twice we reach 

N-2 - 2 ( k - l )  - jam g2*-’[[(2k-2)f2- llh’dx (2.12) 

provided 

n 2 k - 2 “ h 2  (2.13) 

is zero at x = a and at x = m for c = 0 and for c = 1 .  From (2.2) it is easy to verify that 

(2.14) 

We may therefore put f 2 =  1 + Ag2 in (2.12), where A is a constant, and thus obtain the 
recurrence relation 

NL2[1 - A ( k -  1)2]= NL!,[f(k- 1)(2k-3)]. (2.15) 

The value of A will depend upon the forms off and g. In the next section the quantity 
( f 2 -  l ) /g2  in (2.14) will appear as a Casimir operator of a dynamical potential algebra, 
so that its constancy appears naturally in the algebraic approach. 

Equation (2.15) is invalid if k = 1 or 3. Treating these cases separately yields 

NL2 = [$-I~]: (2.16) 

N-2 312-  - (4-A)-’[(2g+f)h21m. (2.17) 

The physical interpretation of these results has been indicated above, but we should 
observe that this does depend on the solutions being normalizable. This question will 
be deferred to section 6, as will the matter of whether (2.13) is zero, because one 
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requires explicit forms for f (x) and g(x). At this stage we remark that applying J+ 
may eventually produce an unphysical state; i.e. JI, becomes non-normalizable for 
sufficiently large n. Note that J,  will not give zero, because the above formula for 
J+lkm) then requires either m = k - 1 or m = -k  

A final point regarding the potential algebra is that we do not assume that the 
values of k and m are restricted to integers and half-integers. We are thus using 
projective representations of the corresponding group (Alhassid et al 1986); in a linear 
representation of the algebra the eigenvalues of Jo a!! have the same fractional part; 
which is therefore an invariant of the representation (Barut and Fronsdal 1965). 

3. Dynamical potential algebras 

A representation space of a dynamical potential algebra contains wavefunctions corre- 
sponding to both different potentials and different energies. The operator realizations 
of the algebra elements will change the energy and the Hamiltonian. Since the potential 
algebra is usually a subalgebra, we proceed to obtain dynamical potential algebras by 
enlarging the above so(2, l )  algebra. The method is to first obtain iso(2, 1) using three 
commuting operators which are components of a vector P (Vi 1968) with respect to 
the so(2,l)  transformations, and then to obtain s0(2,2), for example, by replacing P 
by fi[P, J']. This expansion of the algebra is the reverse of contraction (Gilmore 1974). 

For any real functions F ( x )  and G(x), the multiplicative operators 

P*=e'"G(x) Po = F(x)  

commute, P, are Hermitian conjugates and [Jo, Po] = 0, [ Jo ,  P,] = *P*. The remaining 
iso(2,l) commutation relations 

[J*,PoI=FP* [ J * , P J = O  [J* ,  pTI=F2Po (3.1) 
are satisfied if 

F'= -G G' = fG -fG -2E (3.2) 

Equations (3.1) or (3.2) are linear and homogeneous in F and G, which therefore 
contain an  arbitrary multiplicative constant, From (2,2), G'= fC becomes G'/G = 
-g ' /g  and G = l / g  (leaving the constant to be included later when necessary), and 
then F = -fG = -f /g .  From (2.2) the remaining equation F' = -G is satisfied, and the 
required operators are (any real multiple of) 

P, = e""/g Po = -f I g. (3.3) 
The Casimir operators of this iso(2,l) algebra are P . J= - l ,  and P 2 = ( f 2 - l ) / g 2 .  In 
any representation we have (2.14), and the constant A in (2.15) is just the value of P2. 

Expansion of the iso(2, 1) algebra involves replacing P by 

Y=ji[P,J*] (3.4) 

YA= Yo YI= U,. (3.5) 

where i is included so that 

Using (3.1) gives the following expressions for the components of Y :  
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Then 
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[ J o ,  Yo l=[J* ,  yJ=O [ J * ,  Y, l=32Yo 

[ J o ,  y * I = [ y o ,  J*I=*y* 

[yo, Y J = r A J +  [ U + ,  Y-]=2AJo (3.8) 

(3.7) 

(i.e. Y is a vector), and 

where A = P2.  Since [ P 2 ,  Y ]  = 0, we can assume the value of P’ is constant in an 
irreducible representation of the expanded algebra. 

Equations (2 .3 ) ,  (3.8) and ( 3 . 7 )  are standard commutation relations o f  
(i) ~ 0 0 . 2 )  
(ii) iso(2, 1 )  
(iii) so(3, 1 )  i f A = l .  
For any other non-zero vaiue of A, ihe so(:, 2) or so(3, i j  commutation reiations 

are exhibited by taking Q = YJA/-1‘2 in the basis of the algebra, giving s0(2,2) when 
A < 0 and so(3, l )  when A > 0. 

The s0(2 ,2)  and so(3,l)  algebras have the Casimir operators QoJo-fQ+J-- 
&J+= Q .  J = J .  Q and J2* Q 2 =  5’- Y2/A.  For the iso(2,l) algebra the Casimir 
operators are Y .  J = J .  Y and Y2.  From (3.6) one can show that 

if A = -1, 
if A = 0 or 

1 

Y’= - ( P .  J ) 2 +  P 2 ( J 2 +  1). (3.9) 

Finally, let us write Y and Y 2  in terms of the functionsf and g that satisfy (2.2): 

Y’= -1  + A ( J ’ +  1) 

where J 2  is given in equation (2.4) 

(3.10) 

(3.11) 

4. Representations of the algebras 

In the previous section we have obtained operators J and Q which realize a basis of 
s0(2 ,2)  or of so(3, l ) ,  and operators J and Y realizing a basis of iso(2.1). We now 
consider the representations of these algebras obtained with the representation spaces 
defined in (2.5). Specification of a representation includes giving the values of the 
Casimir operators, a basis of the representation space, and the action of the algebra 
operators in this basis. 

The first Casimir operator ( Q .  J or Y .  J )  has the value zero. This follows directly 
from (3.6). Using (3.9) shows that the second Casimir operator for s0(2,2) and so(% 1) 
is - l+(P.  J ) ’ / A  withthevalue(-l+A-‘).Anaturaldescriptionofso(2,2) representa- 
tions (Wu et a1 1987, 1989) uses coordinates on a four-dimensional hyperboloid and 
writes the second Casimir eigenvalue as w ( w + 2 ) ;  we may identify w with -l+ilhl-”2. 

To obtain the action of the algebra operators on the basis functions lk m) considered 
in section 2 ,  we first consider the action of the operators P. Let Pel = 2-“2P,, SO that 
PR(# =0, * I )  are the ‘circular’ components of the so(2, 1) vector P. Then taking the 
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products P,, k m) amounts to coupling the three-dimensional (non-unitary) representa- 
tion of so(2,I) with the positive discrete series representation 0:. We therefore expect 
an equation of the form 

k + 1  

P,lkm)= E (j llpll Wkm, I 4 J m + ~ ) l j m + w )  (4.1) 

where the (km, lplj m + F )  are so (2, 1) Wigner coefficients. Explicit expressions for 
these Wigner coefficients (Ui 1968) are shown in table 1. Using these results evidently 
assumes that k > l .  Then (4.1) gives P- , lkk)=(k- l  llP[l k)lk-l k - I ) ,  whichcan be 
compared with an explicit evaluation using (2.9), (2.15) and (3.3): 

j = k - I  

Evidently, provided k >  +, 

( l - A ( k - l ) 2  ) I ”  
( k - 1  ((PI( k)=Nk/Nh-,v‘2= 

( k -  1)(2k-3) 

Similarly (4.1) gives 

Substituting (2.9), (3.3) and (2.10), and using (2.15) and (4.2). leads to 

(k  llPll k ) = ( k 2 - k ) - ’ / ’ ,  (4.3) 

Note that (2.10) is used with k replaced by k - 1, and with the normalization factor 
(2k -2)-’”. 

Finally, because P,, are Hermitian conjugates, (4.1) implies 

(4.4) 

(4.5) 

These results assume that the functions \ k  m) can be normalized and that the matrix 
elements of P exist. The condition k > 5 is related to these requirements, which will 
be discussed further in section 6. 

Table 1. Expressions for ro(2, 1) Wigner coefficients ( k m ,  I!&m+!L). 

& = I  j L = O  p=-1 

( m  + k ) (  m + k + 1))”’ , ( l m  - k ) ( m  + k)) ’”  ( 2 k ( Z k - I )  k ( 2 k - I )  
j = k + l  

( m + k ) ( m  - k +  I )  -( 2 k ( k - 1 )  
j = k  

(m - k ) ( m +  k -  I )  -( 2 k ( k - I )  
( m  - k + I ) ( m  - k + 2 )  )”’ ( ( m + k - l ) ( m - k + l )  ( m  + k - I ) ( m  + k -2) ( ( 2 k - 1 ) ( 2 k - 2 )  ( 2 k - l ) ( k - l ]  ) I ”  ( ( 2 k - 1 ) ( 2 k - 2 )  

j = k - l  
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The action of Y on the basis functions is also given by an equation like (4.1). and 
the definition (3.4) directly gives 

(2k - 1)’12(k I/ YI1 k +  1)= - ( 2 k +  1)’I2(k+ 1 11 YII k)=i(k-Ak’)’/’ (4.6) 
and 

( k  II YII k )  = 0. (4.7) 
Including a factor lAl-”2 gives the matrix elements of Q. 

5. Matrix elements connecting eigenstates in the same potential 

We observed in section 2 that the functions written down in (2.9), (2.10) and (2.11) 
were eigenfunctions corresponding to different potentials V,, V,,, and V,,,. 
Throughout this section, as before, we will assume the functions used are normalizable, 
and will remark on any related conditions that appear during the work. Eigenfunctions 
in the same potential VM, given in (2.7), are obtained by taking k = M, k = M - 1 and 
k =  M-2 in (2.9), (2.10) and (2.11) respectively. If we denote (2.9) by $,,(k), these 
eigenfunctions are 

(5.1) 

belonging to the eigenvalues -(M - n -+)’. When these functions are constructed, 
normalization may be preserved, as discussed in section 2. The first three normalized 
eigenfunctions are 

(5.2) XI = NMg 

( 0  = 0, 1,2, . . .) e- tM+~:$,(~-n)  ,i(M-n)+ 

M - 1 / 2 h  

( 2 M - 3 )  ) ( g - M f + f ) g M - ” 2 h  (5.3) 

(5.4) 

( M - l ) ( M  -5) 
” = N M (  2[1- A(M - 1)2][1 - A ( M  -2)’] 

x [ 2 g 2 - 2 ( 2 M  - 3)fg + 2 ( M  - 2 ) ( M  - 1)f’- M +2]gM-’”h. 

The factors appearing in the normalization constants indicate that x2 is not an eigenfunc- 
tion (not normalizable) if M s ~ ,  and similarly (5.4) requires M>j‘. These conditions 
will be derived in the next section, using the asymptotic behaviour of g, and h. 

In this section we consider matrix elements 

(5.5) 

where R is some operator defined on functions of x with domain (a, m). The work in 
the previous section then gives 

(5.6) 

(5.7) 

( l ~ ( - f / g ) ~ l ) = ( M  - I +  1 MIP,IM - I +  1 M )  

(ll(-f/g)[l- 1) = ( M  - I +  1 MIP,IM- 1+2 M )  

and, similarly, the matrix elements of Yo are given in (3.6). Other non-zero matrix 
elements given before are inapplicable to ( 5 . 5 ) ,  which refers to eigenfunctions in the 
same potential. 
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An alternative approach (Lbpez Pineiro and Moreno 1988) is to use hypervirial 
theorems, which apply to the matrix elements of any operator which can be expressed 
as a commutator involving the Hamiltonian H. An example is given by the definition 
of Yo, since J 2  can be replaced by (-H -+): 

(5 .8 )  Yo = fiHP, - fiP,,H. 

This gives (4.7), and the ratios of the matrix elements in (4.6) and either (4.2) or (4.4). 
Also (3.6) give 

(5.10) YoJ2 - J 2  Yo = iPJ2+iJ2Po-2i(P. J ) J o .  

Hence, as P . J = - l  and J o = M ,  

( E ,  - E, ) ( / /  Yol/') = -i( El + E,,+f)(/lPoI /')+2iM&, (5 .11)  

which agrees with (4.1) and (4.3) when I =  I' (putting k = M - I +  1) .  For I f  I' ,  the 
condition for a non-trivial solution of (5.9) and (5.11) is 

(E I  - Er)2+2E1+2EI.+ 1 = 0 

:v'.ic!: -ay be writtes 

( E I  - Er+ 1)*= -4Er= ( 2 M  -2/ '+ 1)2. 

This reduces to 

( M  - I'+fr 1 ) 2 =  ( M  - / + f ) 2  

finally giving /'+ 1 = I  as the condition for non-zero off-diagonal matrix elements of 
Yo and Po. 

From (5.6) and (5.7), the non-zero values are 

(ll(-f/g)ll)= - M / ( M  -O(M - I +  1 )  (5.12) 

[ l  - A ( M  - /+1)'](2M -21+ 1)(/ -  1 )  
M - I +  1)2(2M -2/+1)(2M -2 /+3)  ) (5.13) 

(5.14) 

In calculating (5.12) a factor (M - / ) I / *  is squared, suggesting that the condition I < M 
may be required. 

6. Eigenvalues and eigenfunctions for Gendenshtein and Morse potentials 

In this section the functions f and g will be given explicitly, and results thus obtained 
for specific potentials. There are three classes of solutions of (2.2) according to whether 
f 2 < 1 , f * = l  orf2>1:  

(1) f (x )= tanh(x -c )  g ( x ) =  bsech(x-c) 

(11) f (x) = *l g(x) = b eix 
(111) f ( x )  =coth(x-c) g(x)  = b cosech(x- c ) .  
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Since the Schrodinger equation (2.6) will be solved on an unbounded interval, 
results of physical significance will be independent of c, and we therefore take c = 0. 
Similarly it is sufficient to take only the upper sign in (6.2). Substituting into (2.7) 
gives three classes of potentials: 

(1) (6.4) 
This potential was discovered by Gendenshtein (1983) while finding potentials allowing 
an algebraic solution of the eigenvalue problem. The wavefunctions have also been 
given (Dabrowska et a1 1988, Pertsch 1990). For b = O ,  V , ( x )  reduces to the Rosen- 
Morse potential, but most of our work is invalid when g ( x )  = 0. However, the potential 
algebra is valid, so we explain the observation (Pertsch 1990) that the Rosen-Morse 
and Gendenshtein potentials have the same eigenvalues. 

V , ( x )  = ( b z -  M 2  +a) sech’ x - 2Mb sech x tanh x. 

(11) After a translation x + ( x - l o g  M ) ,  
V , ( ~ ) = M ~ b ’ e - ~ ~ - 2 M ~ b e - ~  

which is a Morse potential. Potentials V ,  and V2 are considered on the interval (-m, 
m). 

(111) (6.6) 
This potential, also obtained by  Gendenshtein, is singular at x = 0. The Schrodinger 
equation is therefore solved on (0, CO) and we can also interpret the results in terms 
of the s-wave of a spherically symmetric problem with potential V3(r ) .  The singularity 
is attractive if I b - M l < f  and repulsive if I b - M l > f .  For b = M * $  one gets the 
non-singular Rosen-Morse potentials 

V, (x )  = ( b 2 + M 2 - + )  cosech2 x - Z M b  coth x cosech x. 

V ( x )  = --f(Zb2F b )  sech’ - , (3 (6.7) 

In case I we can assume b 2 0, because (x ,  b )  + ( -x ,  - b )  leaves (6.4) invariant; in 
cases I1 and 111 we can assume b > 0 since otherwise (6.5) and (6.6) are non-negative. 

Wu and Alhassid (1990) only considered (6.1) and (6.3) with b =0, and so did not 
discuss the Gendenshtein potentials. 

Some of the potentials are illustrated in figures 1-4. 
To consider whether solutions are normalizable, we first give in table 2 the 

asymptotic behaviour ofA g, and h =exp(f g ( x )  dx). The values of h are ambiguous 
to the extent of a multiplicative constant, but this can be absorbed into the normalization 
constant N M ,  and does not affect whether a function is normalizable. 

All three cases have the same qualitative behaviour as x + m: the normalization 
integral will converge provided all powers of g in the function are positive. Because 
g‘= -fg, applying I+ does not decrease the lowest power of g ,  as in (2.9)-(2.11). Thus 
in (5.1) the lowest power of g is M - n - f ,  determined by &(M - n), and so we require 

In case I, the same condition applies as x +  -CO, while in case I1 normalizability 
is ensured by the form of h(-m). Hence for potentials (6.4) and (6.5), there are n ,  
eigenvalues, 

- ( M - ’ ) 2  2 ,  - ( M - ’ ) 2  , . . . , - ( M - n , + f ) 2  (6.8) 

n < M - f .  

where n ,  is determined by 

n ,  -f< M S n , + f  (6.9) 
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VIX) 

Figure 1. Examples of potentials V , ( x )  with the same spectrum. The parametersare M = 5.5 
and b =0, 5,  IO for the full, broken, and chain lines respectively. The common bound state 
spectrum is plotted inside the Rosen-Morse potential well corresponding to b=O. 

Since these conditions are independent of b, they include the Rosen-Morse potential 
obtained from (6.4) when b = 0. 

In case 111, the behaviour as x +  a = O  involves f, g and h, and is determined by 
the highest powers 0f.f and g. From (2.1) and (2.2), applying J+ increases by 1 the 
total power off and g, as in equations (2.9)-(2.11). In (5.1) the power is always M -;, 
and including h gives the behaviour x ~ - ~ + " *  as x+O. We will therefore require 
M < b + f ,  making the eigenfunction zero at x=O (a stronger condition than the 
existence of the normalization integral). The eigenvalues are still given by (6.8) and 
(6.9), provided M < b + f .  If M > b + f ,  the solutions have an unacceptable singularity 
at x = 0. We should also mention the two special cases (6.7), where the eigenfunctions 
are even or odd since V ( x )  is even. If b = M +f  , the solutions are zero at x = 0, and 
(6.8) gives the eigenvalues corresponding to odd eigenfunctions only. If b = M-f ,  the 
solutions are finite but non-zero at x=O, and (6.8) gives the eigenvalues corresponding 
to even eigenfunctions only. These statements agree with the Rosen-Morse eigenvalues 
obtained in case I (after allowing for the x/2 in (6.7) compared to the x in (6.4)). In 
general the first application of J+ that makes m > b + f  produces a function which is 
singular at x = 0. 

In all cases the eigenfunctions are given by (5.1). and the normalized eigenfunctions 
involve a single constant N M ,  as in (5.2)-(5.4). The constants satisfy (2.15), in which 
we can now express the value of A in terms of the potential constants, and verify that 
condition (2.13) requires k > $  in all cases, and in addition k <  b +  1 in case I l l .  When 
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Figure 2. Examples ofpatentids Vl(xl with 5 , 4 , 3 .  2 or I bound slate (Full, broken, chain, 
dotted, and double-dotted chain lines respectively). The corresponding parameters are 
b = 5 and M = 5.5,4.5,3.5,2.5 and 1.5. The five-level spectrum ofthe first potential is plotted. 

M is an integer or half-integer, (2.16) or  (2.17) allow the constant to be determined 
completely. The results are shown in table 3. These values are obtained using table 2, 
and correspond to the following functions h in the three cases: 

h(x) =exp[b tan-'(sinh x)] (6.101) 

h(x)=exp(-b e-") (6.1011) 

h(x)=(tanhrx)b.  (6.1011) 

(The formulae given for NM are actually valid for any real M > 1 if ( 2 M  -2)!  is 
replaced by r ( 2 M  - 1); however, we are unable to show this by the algebraic methods 
of this paper.) 

In the previous sections formulae were given for the matrix elements of Po and Yo. 
We can now identify these operators for the three cases (see table 4). In case 11 the 
appearance of M is due to the translation x +  (x-log M )  used to obtain (6.5). 

The existence of the matrix elements of these operators also depends (as for the 
normalization conditions) on the asymptotic forms given in table 2. As x + m  the 
convergence of a matrix element integral is determined in all three cases by the factor 
(l /g) in the operators. This gives the (previously conjectured) condition I < M for the 
diagonal elements, Considering x+ a (a = -m or 0) shows that no further conditions 
are required. In case 111, as  x + 0, powers of x are unchanged from the normalization 
integral since ( f / g ) +  A''* = l / b ,  and ( l / g ) +  (x/b)  so that g-'(d/dx) does not change 
the power. 
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x 

Figure 3. Examples of potentials V , ( x )  with the same s p e c t ~ m .  The parameters are M = 5.5 
and b = 5 . 5 ,  b, 7 and 10 far the dotted, full, broken and chain lines respeclively. The 
common bound state SpeCtNm is plotted inside the right half of the Rosen-Morse potential 
well, corresponding to b = 6 .  As explained in the text, for the latter i t  consim of the add 
eigenstates of the symmetrical Rosen-Morse well. 

The condition I < M is violated for the highest energy state ( I  = n , )  when either M 
is an integer or the fractional part of M exceeds f .  

1. Ladder operators connecting eigenstates in the same potential 

The purpose of this section is to obtain some operators X, which are ladder operators 
for the eigenfunctions x,: X,xI = c,xI+,. Such operators are known for some special 
cases of the potential (2.7) considered here: the Morse potential (Nieto and Simmons 
1979, Berrondo and Palma 1980, Levine 1982), the Rosen-Morse potential (Englefield 
1987) and the Gendenshtein potential (Fellemans 1989). Their ladder operators require 
the eigenfunctions to be multiplied by a phase factor e'*', where y is an introduced 
non-physical variable. The constant K ,  analogous to M in the potential algebra, is 
related to the energy eigenvalue and changes by 1 when the ladder operators are 
applied. The following work essentially sets the operators used by Fellemans into our 
more general context. 

Since the potential will not change, the factors eiM' will now be discarded, and in 
all previous operators -ia/a+ replaced by M .  The eigenfunctions xI belonging to the 
energy eigenvalue -( M - I+;) '  will be multiplied by , so that a2/ay2 is 
equivalent to H. 



3570 M J Englefield and C Quesne 

X 

Figure 4. Examples of potentials V 3 ( x )  with 5,4,3, 2 01 1 bound state (full, broken, chain, 
dotted and double-dotted chain lines respectively). The corresponding parameters are 
h = 10 and M = 5.5, 4.5, 3.5, 2.5 and 1.5. The five-level spectrum of the first potential is 
plotted. 

From the two operators Po and Yo connecting an eigenfunction xI with the eigenfunc- 
tions X I + , ,  x,- ,  corresponding to the same potential, one can construct two linear 
combinations a,( l )Po+P+(/)  Yo such that 

( l *  l l (a*( l )P"+p*( l )  Y,)lO=o. (7.1) 

The results of sections 4 and 5 show that a*(/) = Fi( M - l+fFi)P*(I), where we shall 
choose P * ( l )  = + I ,  Since Po has non-vanishing diagonal matrix elements, the same is 
true for these two linear combinations, and one finds 

(7.2) ( / l (a+( / )po+p+( / )  yo)( / )  = i M ( M  - /+f*$)-' .  
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Case I Case II Case 111 

(4 - I/ b2)'/' if b > f 

Table 4. Operators with known matrix elements 

Case I Case 11 Case 111 

Potential (6.41 (6.5) (6.61 
-bP,=bf/g sinh x e " / M  cosh x 

d ( d", )/ dx 
b d f  d 
g dx 2 dx 

-ibY,=-( -+-) (cash x) -+fs inh x c'-+$e' M sinhx-+$coshx 

After multiplying the eigenfunctions xI by ei7(M-'f1i2J , M - I + f  may be replaced 
by the operator 

d 
Lo=-i-. (7.3) 

ay 

The two linear combinations (multiplied by e"") become the operators 

(7.4) 

respectively. e i?(M-l+l /2FII  with vanishing matrix elements betweenx, * andxI., 
T h e  three operators Lo, K , ,  K -  close under commutation as follows: 

[Lo,KJ=*K* [K,, K-]=2ALo (7.5) 
where as before A = P2. Since K ,  and K -  are not adjoint, they span with Lo a complex 
Lie algebra. For A = 0, (7.5) are standard commutation relations of is0(2), whereas for 
A f- 0, they become standard commutation relations of S0(3), 

[ L, , L-] = 2 Lo (7.6) [Lo, 1 1  = *L* 

after replacing K ,  by 

L, = A-'/'K, 

where A - ' / 2  is complex for A < 0. 
The iso(2) and so(3) algebras have the Casimir operators 

(7.7) 

(7.8a) 
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and 

respectively. Then from (7.8) and (2.7) we can write 

a2 H=--+V - - L 2 - g 2 W  
ax2 M -  0 

where 

i f A = O  2Mf 
g 

2Mf 
g 

W =-- 1 + K 2  

if A # 0. w=-- 1 + A ( L ~ -  M~+:) 

(7.86) 

(7.9) 

(7.10a) 

(7.10b) 

It may be verified that W gives zero when operating on any eigenfunction. In other 
words, in the space spanned by the bound states, the operators (K2+2Mf/g) and 
(L2+2Mf/Ag) have the constant values 1 and (A-'+ M2-& respectively. 

From (7.2), the ladder operators for raising and lowering the energy are given by 

X,=-2Meri'-iK,(2L,11). (7.11) 

Their eigenvalue shift property can also be directly verified by noting that since H 
commutes with e*iy and LO, and 

[K,, F ( x ) ]  = Ti e7"F'(x)/g(x) (7.12) 

one may write 

[X,,H]=-i[K,, H](2L,Tl) 

= TX*(2L,T 1)TZ. (7.13) 

Here 

2 = 2  ef"fg(2L,~ 1) w (7.14) 

gives zero when acting on any eigenfunction. Applying (7.13) to xI e'7(M-'t1f21 therefore 
leads to the required result. 

The ladder operators do change the normalization, and the usual method of getting 
the change in the normalization factor does not work because X, are not adjoints. It 
can, however, be determined by using the matrix elements of sections 4 and 5, and 
the result is 

i ~ ~ M - I + 1 / 2 ~ l l  c*xI&I e xkxI e i i ( M - l + l / 2 ) =  

(I-f*f)(ZM - / + f F f ) ( 2 M  -2 /+  1)[1 -A(M - /+fFf) ' ]  
2 M - 2 / + l T 2  

(7.15) c, = -2 

For A = 0 these results agree with those given by Nieto and Simmons (1979). 

to sO(4) by considering the additional operators 
In the case where A # 0, the so(3) algebra spanned by LO, L,, L- can be extended 
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One indeed obtains 

(7.17) 

For the two families of Gendenshtein potentials, the operators U,, U, generalize some 
operators known for the Rosen-Morse potential (Englefield 1987). When A = O .  the 
operators U,  have no counterpart because f = *1 leads to e*"g-'( f J / J x  F iJ /Jy)E K , .  
Hence one is only left with the additional operator U,. One then gets the algebra ' 
gl(l)Oiso(2), where gl(1) is spanned by some linear combination of Lo and U,. 

8. Conclusion 

In this paper we have extended a realization of so(2, I )  to give realizations of either 
s0(2,2) or so(3,l)  or iso(2, 1). The so(2, 1) can be interpreted as a potential algebra 
for certain Schrodinger equations, and the larger algebras are then dynamical potential 
algebras containing operators connecting states of different energy. 

The potentials in the Schrodinger equations are the Morse potential given in (6.51, 
the non-singular Gendenshtein potential in (6.4), and the singular Gendenshtein 
potential in (6.6). These three cases are naturally distinguished when the potential 
algebra is extended to a larger algebra. The fact that the same potential algebra is 
associated with these different problems explains why the three potentials (with the 
same value of M )  support the same energy eigenvalues. We have also written their 
eigenfunctions in a common form; for example, (5.2)-(5.4) give the normalized eigen- 
functions when ;< M <$. The dynamical algebras show that certain operators (see 
table 4) have matrix elements with a common form which may be obtained using the 
Wigner-Eckart theorem. Thus the algebraic approach yields unexpected relations 
between different one-dimensional systems, analogous to supersymmetries. The related 
problems also include the Rosen-Morse system as a limiting case of the singular 
Gendenshtein potential. 

Our work is actuaiiy the first to obtain dynamical aigebras associated with the 
Gendenshtein systems. 

Because we can express the operators x and d /dx  in terms of the algebra operators 
(cf table 4), we can obtain (at least in principle) corresponding operators in the three 
systems. As an example of this (section 7), we have written ladder operators (between 
energy eigenstates), known for the non-singular Gendenshtein potential, in a form 
which also applies to the singular case. 

Note that the calculation of eigenvalues and matrix elements by algebraic methods 
presupposes that these quantities exist, and that this assumption cannot usually be 
verified algebraically. Nevertheless we do find the same eigenvalues and matrix elements 
exist in the three different cases, provided there are any eigenvalues at all. The singular 
potential (6.6) supports no eigenvalues if M > b + f ,  in  contrast to the two non-singular 
Cascb. 1 *,,b "IIIFLGIICS appC'l1J "y F*nrrrrrrrrrg  L l l c i  J " 1 ~ " 1 P , L L , ~ J  U, La,= I"IIC.L.UIIJ W l l l C I ,  

are obtained from the algebraic approach. This type of consideration is believed to be 
important in an algebraic approach to scattering (Biedenharn and Stahlhofen 1987). 

Our results for matrix elements are given by (5.12). (5.13) and (5.14). where the 
operators are given in table 4 in section 6. For the Morse potential (Nieto and Simmons 

... ̂. TL:- -I:= ̂ _^^^" ------" I-.. -̂I- z..:.." .L.. ": --.. ,--:*:-" ..C*L- ."..",.*:..-" ... L:̂ L 
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1979) the operators play a basic role in a definition of coherent states. The matrix 
elements have therefore been previously calculated using non-algebraic methods, which 
give a (finite) sum rather than a closed form (Berrondo er a1 1987). 
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